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Progress towards the synthesis of papuaforin A:
selective formation of a-bromoenones from silyl enol ethers
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Abstract—The selective one-pot conversion of enol silyl ethers into a-bromoenones allows a direct preparation of a tricyclic inter-
mediate to papuaforin A.
� 2007 Elsevier Ltd. All rights reserved.
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The antidepressant activity of Hypericum perforatum,
commonly known as St. John’s wort, has drawn much
attention.1–4 St. John’s wort is used as a natural remedy
to treat moderate to mild depression. Studies of the con-
stituents of St. John’s wort and other plants from the
family Guttiferae identified a novel class of natural
products, polycyclic polyprenylated acylphloroglucinols
(PPAPs). Due to their significant biological activity and
challenging structures, members of this class have
become attractive synthetic targets and are shown in
Figure 1.5 Hyperforin (1) was isolated from H. perfora-
tum,6 and is thought to be responsible for the antide-
pressant and antibacterial activities of St. John’s
wort.6–10 Nemorosone (2) shows cytotoxic activity
against epithelioid carcinoma (HeLa), epidermoid
carcinoma (Hep-2), prostate cancer (PC-3), and central
nervous system cancer (U251).11 Papuaforin A (3),
extracted from Hypericum papuanum (Papua New
Guinea), shows moderate cytotoxic activity towards
the KB cell line (IC50 = 4.9 lg/mL) and modest antibac-
terial activity against Micrococcus luteus, Staphylococcus
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Figure 1. Polycyclic polyprenylated acylphloroglucinols (PPAPs).
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epidermidis, and Bacillus cereus.12 As part of a program
to synthesize bioactive constituents from Hypericum and
Echinacea species,13 we report herein the construction of
an advanced intermediate for the synthesis of papua-
forin A.

The 2,2-dimethyl-2H-pyran ring contained in 3 is
formed by cyclization of a prenyl side chain onto
the b-diketone. Initial experiments to prepare this
b-diketone focused on the allylic bromination of an
alkene to produce the tribromide shown below which
readily hydrolyzed to a b-bromo enone. Unfortunately,
when more highly congested systems were evaluated
(R = alkyl), the enone (the product of dibromination
followed by hydrolysis) rather than the b-bromo enone
became the major product.
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Scheme 1. Synthesis of silyl enol ether 6.
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Scheme 2. Synthesis of bromoenones.
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To generate an a-bromoenone, the TIPS enol ether 6
was prepared as shown in Scheme 1 from keto ester
414 by Michael addition followed by Birch reduction/
cyclization15 to generate diol 5. This compound was
oxidized with PCC and the resulting diketone was
silylated to provide 6 using KH and triisopropylsilyl
triflate.16

Initial model studies were conducted on silyl enol ether
7, prepared from the diketo ester and triisopropylsilyl
triflate. As shown in Scheme 2, the radical bromination
of 7 under thermal conditions afforded a mixture of
enone 8 and a-bromoenone 9 in a 2:1 ratio in 60% yield.
In contrast, bromination under photochemical condi-
O
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O
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Scheme 3. Synthesis of an advanced intermediate.
tions generated b-bromoenone 10 in 63% yield, as evi-
denced by the resonance at 7.02 ppm. Photochemical
bromination of 11 produced a-bromo ketone 12 in
70% yield. Its structure was supported by a resonance
at 7.64. The additional steps involved in forming the car-
bonate and later regenerating the allyl group, prompted
us to examine the selective bromination of 6, the precur-
sor to 11. The radical bromination under photochemical
conditions was not clean, but the thermal conditions
allowed a 75% yield of a-bromoketone 13.17

The approach to 3 from 13 began with the Sonogashira
reaction shown in Scheme 3. This reaction failed when
conducted under the typical reaction conditions;
OH
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however, when diethylamine was used as the solvent, a
70% yield of acetylenic ketone 14 was obtained. Reduc-
tion18 of the triple bond to afford 1519 was achieved in
50% yield. The assignment of the stereochemistry of
the hemiketal is tentative, but the resistance of the
hydroxyl group to acetylation supports the assignment
of the hydroxyl group to the more hindered face.
Pyridinium chlorochromate oxidation20 has been used
to convert a tertiary allylic alcohol to the rearranged
enone. Unfortunately, PCC oxidation of 15 did not
produce the desired ketone 16.

The radical bromination of enol silyl ethers generates
a-bromoenones in good yields. Compound 13 was trans-
formed into a tricyclic intermediate to 3 via Sonogashira
coupling and reduction. The conversion of 15 into 16 by
rearrangement followed by oxidation is in progress.
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